A Review of the Continuum Theory-Based Stress and Drag Models in Gas-Solid Flows

Author:

Zhao JunnanORCID,Guo Xinyao,Liu Guodong,Wang Rui,Lu HuilinORCID

Abstract

The continuum theory-based models, which include solid stress models and gas-solid drag models, are required for the modeling of gas-solid flows in the framework of the Eulerian–Eulerian method. The interactions among particles are characterized by their diverse behaviors at different flow regimes, including kinetic motion, particle–particle collision and enduring friction. It is difficult to describe the particle behaviors at various regimes by mathematical methods accurately. Therefore, it is very important to develop proper solid stress models that can capture the inherent characteristics of the flow behaviors. In addition, the gas-solid fluidization system is a typical heterogeneous system, which exhibits locally inhomogeneous structures such as bubbles or particle clusters with different shapes and sizes. Due to these inhomogeneous characteristics, the gas-solid drag model has become one of the key challenges in the simulation of gas-solid flows. Various forms of constitutive relations for solid stress models and gas-solid drag models have been reported in the literature. In this paper, we reviewed the solid stress models crossing various flow regimes and drag models in both micro- and mesoscales, which provide a useful reference for model selection in simulating gas-solid flows.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference115 articles.

1. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, Part A: Eulerian computation of momentum transport in bubbling fluidised beds;Papadikis;Chem. Eng. Sci.,2008

2. A CFD model for biomass fast pyrolysis in fluidized-bed reactors;Xue;Chem. Eng. Sci.,2011

3. Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors;Rokkam;Powder Technol.,2010

4. Schatz, A. (2000). Lump Ore, Pellets, and Dead Men: Mathematical Modelling and Numerical Simulation of the COREX Reduction Shaft. [Ph.D. Thesis, Johannes Kepler University].

5. Granular solids, liquids, and gases;Jaeger;Rev. Mod. phys.,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3