Framework of Transactive Energy Market Strategies for Lucrative Peer-to-Peer Energy Transactions

Author:

Loganathan Arun S.ORCID,Ramachandran VijayapriyaORCID,Perumal Angalaeswari SendrayaORCID,Dhanasekaran SeshathiriORCID,Lakshmaiya NatrayanORCID,Paramasivam PrabhuORCID

Abstract

Leading to the enhancement of smart grid implementation, the peer-to-peer (P2P) energy transaction concept has grown dramatically in recent years allowing the end-users to successfully exchange their excess generation and demand in a more profitable way. This paper presents local energy market (LEM) architecture with various market strategies for P2P energy trading among a set of end-users (consumers and prosumers) in a smart residential locality. In a P2P fashion, prosumers/consumers can export/import the available generation/demand in the LEM at a profit relative to utility prices. A common portal known as the transactive energy market operator (TEMO) is introduced to manage the trading in the LEM. The goal of the TEMO is to develop a transaction agreement among P2P players by establishing a price for each transaction based on the price and trading demand provided by the participants. A few case studies on a location with ten residential P2P participants validate the performance of the proposed TEMO.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. Smart Grid—The New and Improved Power Grid: A Survey;Fang;IEEE Commun. Surv. Tutor.,2012

2. A survey on residential Demand Side Management architecture, approaches, optimization models and methods;Esther;Renew. Sustain. Energy Rev.,2016

3. Intelligent residential energy management system for dynamic demand response in smart buildings;Arun;IEEE Syst. J.,2018

4. (2019, July 20). Solar Bonus Report, Queensland Government. Department of Natural Resources, Mines and Energy, October 2018, Policy Guide, Available online: https://www.dnrm.qld.gov.au/__data/assets/pdf_file/0005/1379678/solar-bonus-scheme.pdf.

5. Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers;Liu;IEEE Trans. Power Syst.,2017

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Simulation-Driven Metaheuristic Algorithms;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Optimizing Optical Fiber Path in Wavelength Division Multiplexing Networks Using Particle Swarm Optimization;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

3. Meta-Heuristic Optimization for Enhanced Sensor-Based Health Monitoring in Cloud Computing Environments;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

4. Machine Learning in Industrial IoT Applications for Safety, Security, Asset Localization, Quality Assurance, and Sustainability in Smart Production;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

5. Experimental Investigation and Comparative Analysis of an Efficient Machine Learning Algorithm for Distribution System Reconfiguration;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3