Spatiotemporal Evolution and Fluctuation Characteristics of a Centrifugal Compressor under Near-Stall Conditions and High Mass-Flow Rate

Author:

Xiao Kang,Wang ZhengdaoORCID,Yang Hui,Wei YikunORCID

Abstract

Spatiotemporal evolution and fluctuation characteristics of a centrifugal compressor are investigated by numerical simulation under near-stall conditions and with a high mass-flow rate. The large-eddy simulation (LES) for unsteady computations is implemented in the numerical simulation of unsteady flow. The internal flow physical mechanism of the centrifugal compressor is presented at a high mass-flow rate (1.1 Qn) and low mass-flow rate (0.8 Qn, near-stall). The spatiotemporal evolution of the velocity and streamline for the internal flow of the centrifugal compressor demonstrates that a lot of large-scale eddies near the tongue are transformed into small-scale ones at high mass-flow rates. High mass-flow rate resulted in excessive fluid velocity in the impeller. A large amount of impact loss massive backflow appears near the tip clearance, and boundary layer separation of the suction surface emerges firstly and at a low mass-flow rate. Considerable flow loss occurs in the centrifugal compressor at the two non-designed operating flow rates. Several pressure and velocity fluctuations in the key position of the compressor are presented by the two deviations from design conditions. The analysis of the fast Fourier transform (FFT) and amplitude spectrum show that the starting point of flow instability in the impeller is different for the two deviations from design-condition flow rates. Understanding the spatiotemporal evolution and spatiotemporal characteristics of pressure and velocity fluctuations can provide insight into the unsteady internal flow of centrifugal compressors at high mass-flow rates (1.1 Qn) and near-stall conditions (0.8 Qn).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. The Distribution and Stability of Flow in a Rotating Channel;Fowler;J. Eng. Power,1968

2. Unsteady and Three-Dimensional Flow Phenomena in a Transonic Centrifugal Compressor Impeller at Rotating Stall;Iwakiri;Turbo Expo: Power for Land, Sea, and Air.,2009

3. Comparative Study on Steady and Unsteady Flow in a Centrifugal Compressor Stage;Kim;Int. J. Aerosp. Eng.,2019

4. Experimental Determination of Mechanical Stress Induced by Rotating Stall in Unshrouded Impellers of Centrifugal Compressors;Jenny;J. Turbomach.,2017

5. The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor;Tomita;Turbo Expo: Power for Land, Sea, and Air,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3