Experiments on Water-Gas Flow Characteristics under Reservoir Condition in a Sandstone Gas Reservoir

Author:

Li Yilong,Yang Hao,Li Xiaoping,Kui Mingqing,Zhang Jiqiang

Abstract

For gas reservoirs that contain water, investigating characteristics of water–gas seepage is crucial to the formulation of gas field development plans and predicting the production capacity and water breakthrough of gas wells. For the purposes of such an investigation, the process of water invasion into a water-containing gas reservoir was studied based on four sandstone samples whose physical properties differed quite vastly (permeability: 0.112–192.251 mD; porosity: 8.33–20.60%). Gas–water relative permeability experiments were conducted on the gas-driven water in the reservoir conditions (temperature: 135 °C; pressure: 75 MPa). Starting with the sandstone samples’ microstructural characteristics, particular attention was paid to the impacts of throat radius and clay content on the water–gas seepage characteristics. It was found that the basic physical properties, microscopic characteristics, and mineral composition of the sandstone samples all affected the water–gas seepage characteristics. The larger the pore-throat radius, the stronger the ability of sandstone samples to allow fluid through under the same water saturation and the greater the relative permeability of gas and water phases. Furthermore, the wider the throat radius and the lower the clay content, the greater the gas–water relative permeability. Isotonic water saturation and irreducible water saturation were found to be negatively to throat radius and positively with clay content. Furthermore, When sandstone samples have similar clay content, the average throat radius is four times larger, its irreducible water saturation is decreased by 1.63%, its residual gas saturation is decreased by 1.00%, and the gas permeability under irreducible water saturation increases by more than 400 times. Water intrusion showed a more significant impact on the gas–water flow characteristics of the low-permeability sandstone samples, and it severely restricted the flow capacity of the gas phase.

Funder

National Science and Technology Major Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3