Abstract
In this study walnut shells, an inexpensive and readily available waste, were used as carbonaceous precursor for preparation of an innovative adsorbent (walnut-shell powder (WSP)) which was successfully tested for the removal of FeII from synthetic acid mine drainage (AMD). Then, the exhausted iron-contaminated adsorbent (WSP-FeII) was recovered and treated with sodium borohydride for the reduction of adsorbed FeII to Fe0. The resulting material (WSP-Fe0) was subsequently tested for the removal of CrVI from aqueous solutions. Treatability batch experiments were employed for both FeII and CrVI-contaminated solutions, and the influence of some important experimental parameters was studied. In addition, the experimental data was interpreted by applying three kinetic models and the mechanism of heavy metal removal was discussed. The overall data presented in this study indicated that fresh WSP and WSP-Fe0 can be considered as promising materials for the removal of FeII and CrVI, respectively. Furthermore, the present work clearly showed that water treatment residuals may be converted in upgraded materials, which can be successfully applied in subsequent water treatment processes. This is an example of sustainable and environmentally-friendly solution that may reduce the adverse effects associated with wastes and delay expensive disposal methods such as landfilling or incineration.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献