Optimum Generated Power for a Hybrid DG/PV/Battery Radial Network Using Meta-Heuristic Algorithms Based DG Allocation

Author:

Abdelwareth Mohamed Els. S.1,Riawan Dedet Candra2,Chompoo-inwai Chow1ORCID

Affiliation:

1. Department of Electrical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Department of Electrical Engineering, Institute Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Abstract

This paper presents four optimization outcomes for a diesel generator (DG), photovoltaic (PV), and battery hybrid generating radial system, to reduce the network losses and achieve optimum generated power with minimum costs. The effectiveness of the four utilized meta-heuristic algorithms in this paper (firefly algorithm, particle swarm optimization, genetic algorithm, and surrogate optimization) was compared, considering factors such as Cost of Energy (COE), the Loss of Power Supply Probability (LPSP), and the coefficient of determination (R2). The multi-objective function approach was adopted to find the optimal DG allocation sizing and location using the four utilized algorithms separately to achieve the optimal solution. The forward-backward sweep method (FBSM) was employed in this research to compute the network’s power flow. Based on the computed outcomes of the algorithms, the inclusion of an additional 300 kW DG in bus 2 was concluded to be an effective strategy for optimizing the system, resulting in maximizing the generated power with minimum network losses and costs. Results reveal that DG allocation using the firefly algorithm outperforms the other three algorithms, reducing the burden on the main DG and batteries by 30.48% and 19.24%, respectively. This research presents an optimization of an existing electricity network case study located on Tomia Island, Southeast Sulawesi, Indonesia.

Funder

King Mongkut’s Institute of Technology Ladkrabang (KMITL), KMITL School of Engineering

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3