Modeling Soil Hydraulic Properties Using Dynamic Variability of Soil Pore Size Distribution

Author:

Kumar Saurabh1ORCID,Ojha Richa1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

Abstract

The knowledge of temporal variability of soil hydraulic properties (SHPs) in agricultural fields can help in reliable assessment of crop water requirement, thus improving irrigation water usage efficiency. The Fokker–Planck equation (FPE) and its modified forms are popularly used to describe temporal variation in SHPs. These models consider statistical description of soil pore size distribution (PSD) as a probability density function to estimate SHP evolution with time. In this study, we compare four different models to describe the temporal evolution of PSD and SHPs for multiple datasets across the world with different soil types, tillage conditions and crop cover. Further, field experiments were carried out at an experimental agricultural field at IIT Kanpur for rice crops, and the performance of these models was also evaluated for Indian conditions. It is observed that existing models have low accuracy for small pore radii values, and the prediction ability of these models is more affected by soil type rather than tillage conditions. More observations can improve the performance of FPE-based numerical and analytical models. The POWER Model is the least accurate because of its inherent power law assumption of PSD, which results in incorrect values for low pore radii. The FPE analytical model can be reliably used for predicting PSD and SHP evolution at most of the field sites.

Funder

Science and Engineering Research Board, Government of India

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3