An AC-DC LED Integrated Streetlight Driver with Power Factor Correction and Soft-Switching Functions

Author:

Cheng Chun-An1ORCID,Cheng Hung-Liang1ORCID,Chang Chien-Hsuan1ORCID,Chang En-Chih1,Kuo Zheng-You1,Lin Cheng-Kuan1,Hou Sheng-Hong1

Affiliation:

1. Department of Electrical Engineering, I-Shou University, Kaohsiung City 84001, Taiwan

Abstract

The use of light-emitting diodes (LEDs) in street lighting applications has been greatly welcomed with the current trends of energy saving, environmental protection, carbon reduction, and sustainable development. This paper presents a novel AC-DC LED integrated streetlight driver that combines an interleaved buck converter with a coupled inductor and a half-bridge series resonant converter with a full-bridge rectifier into a single-stage power conversion topology with power factor correction (PFC) and soft switching capabilities. The PFC is achieved by designing the coupling inductor in the interleaved buck converter sub-circuit in discontinuous conduction mode. In addition, the resonant tank in the half-bridge series resonant converter sub-circuit is designed to be similar to an inductive load, thus giving the power switch a zero-voltage switching (ZVS) function, decreasing switching losses and increasing the overall efficiency of the proposed circuit. A prototype circuit of the proposed LED integrated streetlight driver with a power rating of 165 W (235 V/0.7 A) and 110 V input utility voltage has been developed and tested. According to the measurement results, a power factor greater than 0.98, a total harmonic distortion coefficient of the input current less than 3%, and an efficiency greater than 89% were obtained in the AC-DC LED integrated streetlight driver. Therefore, the experimental results are satisfactory and demonstrate the functionality of the proposed AC-DC LED integrated streetlight driver.

Funder

National Science and Technology Council (NSTC) of Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3