Optimal Dispatch Strategy for Virtual Power Plants with Adjustable Capacity Assessment of High-Energy-Consuming Industrial Loads Participating in Ancillary Service Markets

Author:

Wang Yining1,Li Guangdi1,Zhou Bowen1ORCID,Ma Hongyuan1,Li Ziwen1

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

Amid the context of a sustainable development strategy, there is a growing interest in renewable energy as an alternative to traditional energy sources. However, as the penetration rate of clean energy gradually increases, its inherent features, such as randomness and uncertainty, have led to a surging demand for flexibility and regulation in power systems, highlighting the need to enhance the flexibility of power systems in multiple dimensions. This paper proposes a method for evaluating the adjustable power capacity of a virtual power plant (VPP), which considers the high-energy-consuming industrial load in the day-ahead to real-time stages and establishes an optimization scheduling model for auxiliary service markets based on this method. Firstly, within the day-ahead phase, the VPP is categorized and modeled based on its level of load flexibility regulation. The assessable capacity is then evaluated to establish the adjustable power range of the VPP, and the capacity of the VPP is subsequently reported. Secondly, the adjustable loads inside the VPP are ranked using the performance indicator evaluation method to obtain the adjustment order of internal resources. Finally, on the real-time scale, an optimization scheduling model to minimize the net operating cost of the VPP is established based on real-time peak-shaving and frequency regulation instructions from the auxiliary service market and solved using the CPLEX solver. The case study results show that the proposed method effectively reduces the net operating cost of the VPP and improves the stability of its participation in the auxiliary service market, which verifies the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China—Self-organizing Aggregation and Regulation Theory of Massive Resources Virtual Power Plant for Power Grid Balance Demand

Guangdong Basic and Applied Basic Research Foundation

Science and Technology Projects of Liaoning Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3