Intelligent Identification and Prediction Mineral Resources Deposit Based on Deep Learning

Author:

Gao Le1,Wang Kun2,Zhang Xin1,Wang Chen1

Affiliation:

1. Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China

2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

In recent years, the intelligent identification and prediction of ore deposits based on deep learning algorithm and image processing technology has gradually become one of the main research frontiers in the field of geological and metallogenic prediction. However, this method also has many problems that need to be solved. For example: (1) There are very few trainable image samples containing mineral point labels; (2) the geological image features are small and irregular, and the image similarity is high; (3) it is difficult to calculate the influence of different geological prospecting factors on ore mineralization. Based on this, this paper constructs a deep learning network model multiscale feature attention framework (MFAF) based on geoimage data. The results show that the MFCA-Net module in the MFAF model can solve the problem of scarce mine label images to a certain extent. In addition, the channel attention mechanism SE-Net module can quantify the difference in influence of different source factors on mineralization. The prediction map is obtained by applying the MFAF model in the study of deposit identification and prediction in the research area of the southern section of the Qin-hang metallogenic belt. The experimental results show that the areas numbered 5, 9, 16, 28, 34, 41, 50, 72, 74, 75, 80, 97, 101, 124, and 130 have great metallogenic potential and this method would be a promising tool for metallogenic prediction. A large number of experimental results show that this method has obvious advantages over other state-of-the-art methods in the prediction of prospecting target areas, and the prediction effect in the samples with mines is greatly improved. The multi-scale feature fusion and attention mechanism MFAF in this paper can provide a new way of thinking for geologists in mineral exploration. The research of this paper also provides resource guarantees and technical support for the sustainable exploitation of mineral resources and the sustainable growth of society and economy.

Funder

Guangdong province teaching reform fund

Bureau of Science and Technology of Jiangmen Municipality

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference54 articles.

1. What are Mathematical Geosciences and its frontiers?;Cheng;Earth Sci. Front.,2021

2. The Great-leap-forward Development of Mathematical Geoscience During 2010–2019: Big Data and Artificial Intelligence Algorithm Are Changing Mathematical Geoscience;Zhou;Bull. Mineral. Petrol. Geochem.,2021

3. Data science-based theory and method of quantitative prediction of mineral resources;Zuo;Earth Sci. Front.,2021

4. Using logistic regression model selection towards interpretable machine learning in mineral prospectivity modeling;Kost;Geochemistry,2021

5. Evaluating the classification of images from geoscience papers using small data;Santos;Appl. Comput. Geosci.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3