Spatial Distribution of Soil Heavy Metal Concentrations in Road-Neighboring Areas Using UAV-Based Hyperspectral Remote Sensing and GIS Technology

Author:

Gan Wenxia1,Zhang Yuxuan1,Xu Jinying2,Yang Ruqin34,Xiao Anna5,Hu Xiaodi1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China

2. Shenzhen Expressway Engineering Consultants Co., Ltd., Shenzhen 518034, China

3. Wuhan Natural Resources and Planning Information Center, Wuhan 430014, China

4. Hubei Surveying and Mapping Engineering Institute, Wuhan 430074, China

5. Hubei Communication Investment Intelligent Detection Co., Ltd., Wuhan 430050, China

Abstract

Monitoring and restoring soil quality in areas neighboring roads affected by traffic activities require a thorough investigation of heavy metal concentrations. This study examines the spatial heterogeneity of copper (Cu) and chromium (Cr) concentrations in a 0.113 km² area adjacent to Jin-Long Avenue in Wuhan, China, using Unmanned Aerial Vehicle (UAV)-based hyperspectral remote sensing technology. Through this UAV-based remote sensing technology, we innovatively achieve a small-scale and fine-grained analysis of soil heavy metal pollution related with traffic activities, which represents a major contribution of this research study. In our approach, we generated 4375 spectral variates by transforming the original spectrum. To enhance result accuracy, we applied the Boruta algorithm and correlation analysis to select optimal spectral variates. We developed the retrieval model using the Gradient Boosting Decision Tree (GBDT) regression method, selected from a set of four regression methods using the LOOCV method. The resulting model yielded R-square values of 0.325 and 0.351 for Cu and Cr, respectively, providing valuable insights into the heavy metal concentrations. Based on the retrieved heavy metal concentrations from bare soil pixels (17,420 points), we analyzed the relationship between heavy metal concentrations and the perpendicular distance from the road. Additionally, we employed the universal kriging interpolation method to map heavy metal concentrations across the entire area. Our findings reveal that the concentration of heavy metals in this area exceeds background values and decreases as the distance from the road increases. This research significantly contributes to the understanding of spatial distribution characteristics and pollution caused by heavy metal concentrations resulting from traffic activities.

Funder

National Natural Science Fund of China

Scientific research project of the Hubei Provincial Department of Communications

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3