Shared Trading Strategy of Multiple Microgrids Considering Joint Carbon and Green Certificate Mechanism

Author:

Chen Peng1,Qian Chen1,Lan Li1,Guo Mingxing1,Wu Qiong2,Ren Hongbo2,Zhang Yue2

Affiliation:

1. State Grid Shanghai Economic Research Institute, Shanghai 200233, China

2. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China

Abstract

With a background of carbon peak and neutrality, the economic and environmental requirements are increasing for microgrids. In view of the problem of energy wastage and conflicts of interest among multiple microgrid integrated energy systems, it is important to study the operation optimization of microgrid clusters while considering the sharing and trading of both carbon emissions and green certificates. In this study, a Stackelberg game mechanism is applied, in which the microgrid operator is the leader and its subscribers are the followers, forming a master–slave interaction model. Following this, breaking the trading barriers of energy and various policy markets, the joint carbon and green certificate trading mechanism is proposed. Moreover, a mutually beneficial shared trading model of multi-microgrids considering coupled energy and carbon and green certificate trading is proposed to avoid the problem of double counting of environmental attributes. In addition, a cooperative sharing center is assumed to propose a flexible multi-resource sharing price mechanism. It guides each microgrid operator to conduct internal multi-resource sharing trading, so as to reduce the daily operating costs of energy supplying entities in the cooperative system of multiple microgrids, effectively reduce carbon emissions, and improve the balance of network group mutual aid. According to the simulation results of an illustrative example, the proposed trading strategy can effectively unlock the potential of resource sharing and mutual aid within multi-microgrids and improve the economy and carbon reduction effects of the overall system.

Funder

Research on the Low-carbon and Economic Operation Strategy of Multi energy Complementary Energy Systems in Industrial Parks Considering Carbon Trading

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3