The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review

Author:

Bunyan Sadiq T.1,Dhahad Hayder A.2ORCID,Khudhur Dhamyaa S.1ORCID,Yusaf Talal34ORCID

Affiliation:

1. Mechanical Engineering Department, Mustansiriyah University, Baghdad P.O. Box 14022, Iraq

2. Mechanical Engineering Department, University of Technology, Baghdad P.O. Box 18310, Iraq

3. School of Engineering and Technologies, Central Queensland University, Rockhampton, QLD 4701, Australia

4. College of Engineering, Almaaqal University, Basra 61003, Iraq

Abstract

Proton exchange membrane fuel cell is essentially utilized to generate energy with zero emission. There are many drawbacks in PEMFC, such as the mal-distribution of reactants, water management between the catalyst layer and the GDL, and the mass transport issue of reactants. Flow field design parameters can overcome these problems to improve cell performance. Where the flow field is an essential element of the fuel cell, and it is designed to provide the required amount of both hydrogen and oxygen with the lowest possible pressure drop on the anode and cathode sides, respectively. In this paper, the cell performance with different flow field design parameters, such as conventional flow field configuration, nature-inspired flow field configuration, and geometric parameters, as well as their modifications, is reviewed in detail. It has been demonstrated through the current review paper that the flow field design parameters can significantly affect the overall behavior of PEMFC, and each design parameter has advantages and disadvantages that make the flow fields suitable for specific applications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3