Simulation Analysis of the Dispersion of Typical Marine Pollutants by Fusion of Multiple Processes

Author:

Guo Xueqing1,Liu Yi1,Zhang Jian-Min23,Chen Shengli1,Li Sunwei1,Hu Zhen-Zhong12ORCID

Affiliation:

1. Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China

2. Institute for Ocean Engineering, Tsinghua University, Beijing 100084, China

3. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

Abstract

The rapid development of coastal economies has aggravated the problem of pollution in the coastal water bodies of various countries. Numerous incidents of massive-scale marine life deaths have been reported because of the excessive discharge of industrial and agricultural wastewater. To investigate the diffusion of typical pollutants after discharge, in this study, a multi-process fusion simulation analysis model of pollutants under the action of ocean currents was established based on the concentration analysis method. Furthermore, key technologies involved, such as the parameter value, data selection, and visualization, were investigated. The iterative analysis and programming realization of three independent sub-processes, such as pollutant diffusion and transport, and the drift path and concentration distribution of pollutants after their discharge into the sea, were visualized. The case study revealed that the increase in the concentration of pollutants in the ocean was affected by the diffusion sub-process, and the transport sub-process plays a critical role in the long-distance transport of pollutants. The proposed method can provide technical support for marine environmental risk assessment and dynamic tracking of marine pollutants.

Funder

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Key Laboratory of Marine IntelliSense and Computation

Major program of stable sponsorship for higher institutions (Shenzhen Science and Technology Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3