Integration of High-Accuracy Geospatial Data and Machine Learning Approaches for Soil Erosion Susceptibility Mapping in the Mediterranean Region: A Case Study of the Macta Basin, Algeria

Author:

Bouguerra Hamza1ORCID,Tachi Salah Eddine2ORCID,Bouchehed Hamza2ORCID,Gilja Gordon3ORCID,Aloui Nadir2,Hasnaoui Yacine2ORCID,Aliche Abdelmalek2ORCID,Benmamar Saâdia2,Navarro-Pedreño Jose4ORCID

Affiliation:

1. Water Resources and Sustainable Development Laboratory, Department of Geology, Faculty of Earth Sciences, Badji Mokhtar—Annaba University, P.O. Box 12, Annaba 23000, Algeria

2. Department of Hydraulics, Laboratoire de Recherche des Sciences de L’eau, National Polytechnic School, 10 Rue des Frères OUDEK, El Harrach, Algiers 16200, Algeria

3. Department of Hydroscience and Engineering, Faculty of Civil Engineering, University of Zagreb, Kaciceva 26, HR-10000 Zagreb, Croatia

4. Department of Agrochemistry and Environment, University Miguel Hernández of Elche, 03202 Elche, Spain

Abstract

Erosion can have a negative impact on the agricultural sustainability and grazing lands in the Mediterranean area, especially in northern Algeria. It is useful to map the spatial occurrence of erosion and identify susceptible erodible areas on large scale. The main objective of this research was to compare the performance of four machine learning techniques: Categorical boosting, Adaptive boosting, Convolutional Neural Network, and stacking ensemble models to predict the occurrence of erosion in the Macta basin, northwestern Algeria. Several climatologic, morphologic, hydrological, and geological factors based on multi-sources data were elaborated in GIS environment to determine the erosion factors in the studied area. The conditioning factors encompassing rainfall erosivity, slope, aspect, elevation, LULC, topographic wetness index, distance from river, distance from roads, clay mineral ratio, lithology, and geology were derived via the integration of topographic attributes and remote sensing data including Landsat 8 and Sentinel 2 within a GIS framework. The inventory map of soil erosion was created by integrating data from the global positioning system to locate erosion sites, conducting extensive field surveys, and analyzing satellite images obtained from Google Earth through visual interpretation. The dataset was divided randomly into two sets with 60% for training and calibrating and 40% for testing the models. Statistical metrics including sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (ROC) were used to assess the validity of the proposed models. The results revealed that machine learning and deep learning, as well stacking ensemble techniques, showed outstanding performance with accuracy over 98% with sensitivity 0.98 and specificity 0.98. Policy makers and local authorities can utilize the predicted erosion susceptibility maps to promote sustainable use of water and soil conservation and safeguard agricultural activities against potential damage.

Funder

Ministry of Higher Education and Scientific Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3