Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm

Author:

Zaky Alaa A.1ORCID,Ghoniem Rania M.2,Selim F.1ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrel-Sheikh 33511, Egypt

2. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

The proton exchange membrane fuel cell (PEMFC) is a green energy converter that is based on the chemical reaction process. The behavior of this system can change with time due to aging and operating conditions. Knowing the current state of this system requires an accurate model, and an exact PEMFC model requires precise parameters. These parameters should be identified and used to properly fit the polarization curve in order to effectively replicate the PEMFC behavior. This work suggests a precise unknown PEMFC parameter extraction based on a new metaheuristic optimization algorithm called the modified bald eagle search algorithm (mBES). The mBES is an optimization algorithm based on the principles of bald eagle behavior that combines local search and global search to achieve a balance between the exploration and exploitation of search spaces. It is a powerful and efficient technique for optimization problems where accurate and near-optimal solutions are desired. To approve the accuracy of the proposed identification approach, the proposed algorithm is compared to the following metaheuristic algorithms: bald eagle search algorithm (BES), artificial ecosystem-based optimization (AEO), leader Harris Hawk’s optimization (LHHO), rain optimization algorithm (ROA), sine cosine algorithm (SCA), and salp swarm algorithm (SSA). This evaluation process is applied to two commercialized PEMFC stacks: BCS 500 W PEMFC and Avista SR-12 PEM. The extracted parameters’ accuracy is measured as the sum of square errors (SSE) between the results produced by the optimizer and the experimental data in the objective function. As a result, the proposed PEMFC optimizing model outperforms the comparison models in terms of system correctness and convergence. The proposed extraction strategy, mBES, obtained the best results, with a fitness value of 0.011364 for the 500 W BCS and 0.035099 for the Avista SR-12 500 W PEMFC.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3