Affiliation:
1. Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
Abstract
Recent trends in abnormal weather patterns leading to sudden and localized heavy rainfall have resulted in an increased frequency of surface landslides. As a result, there is a pressing need for improved prediction and early warning systems. This research focuses on understanding soil behavior under quasi-saturation and elucidating its relationship with pore water pressure and the hydraulic head. In the present study, a mathematical model is formulated to characterize the complex dynamics of quasi-saturation based on established principles. The model demonstrates the correlation between volumetric water content and pore water pressure, considering the influence of the hydraulic gradient. Through two comprehensive model tests, empirical data are generated that highlight the intricate factors influencing quasi-saturation. The findings of this study emphasize the complex interrelationship between volumetric water content, pore water pressure, and the hydraulic head. It is worth noting that under quasi-saturation conditions, the volumetric water content may stabilize over time, indicating an equilibrium between water flow rates driven by the hydraulic gradient and pore water pressure. The present study offers new insights into soil moisture dynamics and lays the foundation for advancements in landslide prediction and mitigation strategies.
Funder
Grant-in-Aid for Scientific Research
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献