Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China

Author:

Zhang Xin12,Zhang Jianheng3,Xue Jiaxin2,Wang Guiyan1245

Affiliation:

1. College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China

2. State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China

3. College of Horticulture, Hebei Agricultural University, Baoding 071000, China

4. Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071000, China

5. Key Laboratory of North China Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding 071001, China

Abstract

Achieving the goal of increasing both crop yield and water-use efficiency with a better irrigation regime is a major challenge in semi-arid areas. In this study, we presented a two-season field experiment (October 2018–June 2019 and October 2019–June 2020) that considered drought stresses, i.e., no irrigation (W0), irrigated in jointing (W1), both in jointing and flowering (W2) after re-greening, and wheat varieties (S086; J22). The results showed that a 45.5% excess of irrigation water input did not promote wheat yield (W1 vs. W2). S086 was beneficial for the usage of soil water consumption under a low amount of irrigation water in both seasons. In addition, irrigation positively affected the activities of superoxide dismutase and catalase in flag leaves (p < 0.05). A decrease in irrigation helped to increase the concentrations of soluble sugar and proline and decrease the amount of malondialdehyde content for S086. For the water- and irrigation-water-use efficiency, W1 was significantly increased by 20.6–21.7% and 38.3–39.3% in 2018–2019 and 23.4–24.4% and 43.8–44.7% in 2019–2020, respectively, as compared to W2. Additionally, a higher yield for S086 than J22 was found under deficit irrigation. Consequently, our study suggested that the S086 variety combined with a total amount of irrigation water of 165 mm might be recommended to meet the win–win goal of high crop yields and water-use efficiency for reducing ground water depletion in the future.

Funder

Key Research and Development Program of Hebei Province

State Key Laboratory of North China Crop Improvement and Regulation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3