Receding Galerkin Optimal Control with High-Order Sliding Mode Disturbance Observer for a Boiler-Turbine Unit

Author:

Zhao Gang1,Sun Yuge1,Su Zhi-Gang1,Hao Yongsheng1

Affiliation:

1. The National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210018, China

Abstract

The control of the boiler-turbine unit is important for its sustainable and robust operation in power plants, which faces great challenges due to the control unit’s serious nonlinearity, unmeasurable states, variable constraints, and unknown time-varying lumped disturbances. To address the above issues, this paper proposes a receding Galerkin optimal controller with a high-order sliding mode disturbance observer in a composite scheme, in which a high-order sliding mode disturbance observer is first employed to estimate the lumped disturbances based on a deviation form of the mathematical model of the boiler-turbine unit. Subsequently, under the hypothesis of state constraint, a receding Galerkin optimal controller is designed to compensate the lumped disturbances by embedding their estimates into the mathematically based predictive model at each sampling time instant. With the help of an interpolation polynomial, Gauss integration, and nonlinear solvers, an optimal control law is then obtained based on a Galerkin optimization algorithm. Consequently, disturbance rejection, target tracking, and constraint handling performance of a controlled closed-loop system are improved. Some simulation cases are conducted on a mathematical boiler-turbine unit model to demonstrate the effectiveness of the proposed method, which is supported by the quantitative result analysis, such as tracking and disturbance rejection performance indexes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3