Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future

Author:

Singh Kshetrimayum Birla1,Kaushalendra 2,Verma Savita3,Lalnunpuii Rowland4,Rajan Jay Prakash5

Affiliation:

1. Department of Zoology, School of Life Sciences, Manipur University, Canchipur 795003, India

2. Department of Zoology, Pachhunga University College, Aizawl 796001, India

3. Applied Sciences Department, Galgotias College of Engineering and Technology, Greater Noida 201306, India

4. Department of Biotechnology, Pachhunga University College, Aizawl 796001, India

5. Department of Chemistry, Pachhunga University College, Aizawl 796001, India

Abstract

Biofuel production using cyanobacteria aims to maintain the sustainability of an ecosystem with minimum impact on the environment, unlike fossil fuels, which cause havoc on the environment. The application of biofuel as an alternative energy source will not only help in maintaining a clean environment and improving air quality but also decrease harmful organic matter content from aquatic bodies. Cyanobacteria are valuable sources of many novel bioactive compounds, such as lipids and natural dyes, with potential commercial implications. One of the advantages of cyanobacteria is that their biochemical constituents can be modified by altering the source of nutrients and growth conditions. Careful changes in growth media and environmental conditions altering the quality and quantity of the biochemicals and yield capacity have been discussed and analyzed. In the present review, the challenges and successes achieved to date in the commercial production of biofuel and its application in the transportation industry are discussed. The authors also focus on different types of feedstocks obtained from biomass, especially from cyanobacterial species. This review also discusses the selection of appropriate cyanobacterial species with merits and demerits in the post-harvesting process. In sum, the current review provides insight into the use of organic bioresources to maintain a sustainable environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3