A Method for Improving Heat Dissipation and Avoiding Charging Effects for Cavity Silicon-on-Glass Structures

Author:

Wang Junduo12,Hu Yuwei12,Qian Lei12,Shan Yameng12,Shen Wenjiang2

Affiliation:

1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China

2. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Abstract

Anode bonding is a widely used method for fabricating devices with suspended structures, and this approach is often combined with deep reactive-ion etching (DRIE) for releasing the device; however, the DRIE process with a glass substrate can potentially cause two critical issues: heat accumulation on the suspended surface and charging effects resulting from the reflection of charged particles from the glass substrate. In particular, for torsional bars with narrow widths, the heat accumulated on the suspended surface may not dissipate efficiently, leading to photoresist burning and, subsequently, resulting in the fracture of the torsional bars; moreover, once etching is finished through the silicon diaphragm, the glass surface becomes charged, and incoming ions are reflected towards the back of the silicon, resulting in the etching of the back surface. To address these issues, we proposed a method of growing silicon oxide on the back of the device layer. By designing, simulating, and fabricating electrostatic torsional micromirrors with common cavity silicon-on-glass (SOG) structures, we successfully validated the feasibility of this approach. This approach ensures effective heat dissipation on the suspended surface, even when the structure is over-etched for an extended period, and enables the complete etching of torsional bars without adverse effects due to the overheating problem; additionally, the oxide layer can block ions from reaching the glass surface, thus avoiding the charging effect commonly observed in SOG structures during DRIE.

Funder

Research on Shortwave Infrared Chip-based Spectral Detection Technology

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3