Design, Control, and Assessment of a Synergy-Based Exosuit for Patients with Gait-Associated Pathologies

Author:

Jayakumar Ashwin1ORCID,Bermejo-García Javier1ORCID,Rodríguez Jorge Daniel1ORCID,Agujetas Rafael1ORCID,Romero-Sánchez Francisco1ORCID,Alonso-Sánchez Francisco J.1ORCID

Affiliation:

1. Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avda. de Elvas S/N, 06006 Badajoz, Spain

Abstract

With ever-rising population comes a corresponding rise in people with mobility issues who have difficulty handling tasks in their daily lives. Such persons could benefit significantly from an active movement assistance device. This paper presents the design of a lower-limb exosuit designed to provide the wearer with useful gait assistance. While exoskeletons have existed for a while, soft exoskeletons or exosuits are relatively new. One challenge in the design of a gait-assistance device is the reduction of device weight. In order to facilitate this, the concept of kinematic synergies is implemented to reduce the number of actuators. In this prototype, the exosuit can actuate the hip, ankle, and knee of both legs using just one single motor, and a transmission system consisting of gears and clutches. The implementation of these synergies and their advantages are detailed in this paper, as well as preliminary tests to assess performance. This was performed by testing the exosuit worn by a subject on a treadmill while taking EMG readings and measuring cable tension produced. Significant reductions by up to 35% in certain muscle activations were observed, demonstrating the validity of this prototype for gait assistance.

Funder

Ministry of Science and Innovation—Spanish Agency of Research

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic synergies in cable-driven exosuits for gait assistance;Mechanics Based Design of Structures and Machines;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3