Synthesis and Investigation of the Hydration Degree of CA2 Phase Modified with Boron and Fluorine Compounds

Author:

Pyzalski Michał1ORCID,Durczak Karol2ORCID,Sujak Agnieszka2ORCID,Juszczyk Michał3ORCID,Brylewski Tomasz1ORCID,Stasiak Mateusz4ORCID

Affiliation:

1. Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Cracow, Poland

2. Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland

3. Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland

4. Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland

Abstract

This study investigated the effect of fluoride and boron compound additives on the synthesis and hydration process of calcium aluminate (CA2). The analysis showed that the temperature of the full synthesis of CA2 without mineralizing additives was 1500 °C. However, the addition of fluorine and boron compounds at 1% and 3% significantly reduced the synthesis temperature to a range of 1100–1300 °C. The addition of fluoride compounds did not result in the formation of fluoride compounds from CaO and Al2O3, except for the calcium borate phase (Ca3(BO3)2) under certain conditions. In addition, the cellular parameters of the synthesized calcium aluminate phases were not affected by the use of these additives. Hydration studies showed that fluoride additives accelerate the hydration process, potentially improving mechanical properties, while boron additives slow down the reaction with water. These results highlight the relevance of fluoride and boron additives to the synthesis process and hydration kinetics of calcium aluminate, suggesting the need for further research to optimize their application in practice. TG studies confirmed the presence of convergence with respect to X-ray determinations made. SEM, EDS and elemental concentration maps confirmed the presence of a higher Al/Ca ratio in the samples and also showed the presence of hexagonal and regular hydration products.

Funder

Ministry of Education and Science

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3