Tensile Strength and Mode I Fracture Toughness of Polymer Concretes Enhanced with Glass Fibers and Metal Chips

Author:

Salamat-Talab Mazaher1ORCID,Zeinolabedin-Beygi Ali2ORCID,Soltani Faraz3ORCID,Akhavan-Safar Alireza4ORCID,Carbas Ricardo J. C.4ORCID,da Silva Lucas F. M.5ORCID

Affiliation:

1. Department of Mechanical Engineering, Arak University of Technology, Arak 3818146763, Iran

2. Department of Mechanical Engineering, Tarbiat Modares University, Tehran 1411713116, Iran

3. Department of Mining Engineering, Arak University of Technology, Arak 3818146763, Iran

4. Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4200-465 Porto, Portugal

5. Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Abstract

This study experimentally investigates the influence of metal chips and glass fibers on the mode I fracture toughness, energy absorption, and tensile strength of polymer concretes (PCs) manufactured by waste aggregates. A substantial portion of the materials employed in manufacturing and enhancing the tested polymer concrete are sourced from waste material. To achieve this, semi-circular bend (SCB) samples were fabricated, both with and without a central crack, to analyze the strength and fracture behavior of the composite specimens. The specimens incorporated varying weight percentages comprising 50 wt% coarse mineral aggregate, 25 wt% fine mineral aggregate, and 25 wt% epoxy resin. Metal chips and glass fibers were introduced at 2, 4, and 8 wt% of the PC material to enhance its mechanical response. Subsequently, the specimens underwent 3-point bending tests to obtain tensile strength, mode I fracture toughness, and energy absorption up to failure. The findings revealed that adding 4% brass chips along with 4% glass fibers significantly enhanced energy absorption (by a factor of 3.8). However, using 4% glass fibers alone improved it even more (by a factor of 10.5). According to the results, glass fibers have a greater impact than brass chips. Introducing 8% glass fibers enhanced the fracture energy by 92%. However, in unfilled samples, aggregate fracture and separation hindered crack propagation, and filled samples presented added barriers, resulting in multiple-site cracking.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3