Enhancing the Machining Performance of Nomex Honeycomb Composites Using Rotary Ultrasonic Machining: A Finite Element Analysis Approach

Author:

Zarrouk Tarik12ORCID,Salhi Jamal-Eddine34ORCID,Nouari Mohammed2,Bouali Abdelilah1

Affiliation:

1. CREHEIO (Centre de Recherche de L’Ecole des Hautes Etudes d’Ingénierie), Oujda 60000, Morocco

2. CNRS, LEM3, IMT, GIP InSIC, Université de Lorraine, F-88100 Saint Dié Des Vosges, France

3. Departement of Mathematics, Saveetha School of Engineering, SIMATS, Chennai 602105, India

4. Laboratory of Energetics (LE), Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco

Abstract

Nomex honeycomb composites (NHCs) are commonly used in various industrial sectors such as aerospace and automotive sectors due to their excellent material properties. However, when machining this type of structure, problems can arise due to significant cutting forces and unwanted cell vibrations. In order to remedy these shortcomings, this study proposes to integrate RUM (rotary ultrasonic machining) technology, which consists of applying ultrasonic vibrations along the axis of rotation of the cutter. To fully understand the milling process by ultrasonic vibrations of the NHC structure, a 3D numerical finite element model is developed using Abaqus/Explicit software. The results of the comparative analysis between the components of the simulated cutting forces and those from the experiment indicate a close agreement between the developed model and the experimental results. Based on the developed numerical model, this study comprehensively analyzes the influence of the ultrasonic vibration amplitude on various aspects, such as stress distribution in the cutting zone, chip size, the quality of the machined surface and the components of the cutting force. Ultimately, the results demonstrate that the application of ultrasonic vibrations leads to a reduction of up to 50% in the components of the cutting force, as well as an improvement in the quality of the machined surface and a reduction in the size of chips.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3