Photovoltaic Effect of La and Mn Co-Doped BiFeO3 Heterostructure with Charge Transport Layers

Author:

Lv Jiwei1,Ning Huanpo1

Affiliation:

1. College of Science, Donghua University, Shanghai 201620, China

Abstract

Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMnx)O3 (x = 0, 0.05, 0.1, 0.15) (denoted as BLF, BLFM5, BLFM10, BLFM15, respectively) were prepared via a sol–gel technique on indium tin oxide (ITO) glass. All the films are monophasic, showing good crystallinity. The optical bandgap Eg was found to decrease monotonously with an increase in the Mn doping amount. Compared with other compositions, the BLFM5 sample exhibits a better crystallinity and less oxygen vacancies as indicated by XRD and XPS measurements, thereby achieving a better J–V performance. Based on BLFM5 as the light absorbing layer, the ITO/ZnO/BLFM5/Pt and ITO/ZnO/BLFM5/NiO/Pt heterostructure devices were designed and characterized. It was found that the introduction of the ZnO layer increases both the open circuit voltage (Voc) and the short circuit current density (Jsc) with Voc = 90.2 mV and Jsc = 6.90 μA/cm2 for the Pt/ BLFM5/ZnO/ITO device. However, the insertion of the NiO layer reduces both Voc and Jsc, which is attributed to the weakened built-in electric field at the NiO/BLFM5 interface.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3