Graph-based Method for App Usage Prediction with Attributed Heterogeneous Network Embedding

Author:

Zhou Yifei,Li ShaoyongORCID,Liu Yaping

Abstract

Smartphones and applications have become widespread more and more. Thus, using the hardware and software of users’ mobile phones, we can get a large amount of personal data, in which a large part is about the user’s application usage patterns. By transforming and extracting these data, we can get user preferences, and provide personalized services and improve the experience for users. In a detailed way, studying application usage pattern benefits a variety of advantages such as precise bandwidth allocation, App launch acceleration, etc. However, the first thing to achieve the above advantages is to predict the next application accurately. In this paper, we propose AHNEAP, a novel network embedding based framework for predicting the next App to be used by characterizing the context information before one specific App being launched. AHNEAP transforms the historical App usage records in physical spaces to a large attributed heterogeneous network which contains three node types, three edges, and several attributes like App type, the day of the week. Then, the representation learning process is conducted. Finally, the App usage prediction problem was defined as a link prediction problem, realized by a simple neural network. Experiments on the LiveLab project dataset demonstrate the effectiveness of our framework which outperforms the three baseline methods for each tested user.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference37 articles.

1. Mining smartphone data for app usage prediction and recommendations: A survey

2. Predicting app usage based on link prediction in user-app bipartite network;Tan,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MAPLE;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-03-06

2. DDHCN: Dual decoder Hyperformer convolutional network for Downstream-Adaptable user representation learning on app usage;Expert Systems with Applications;2024-03

3. Predicting Next Application Most Likely Used with Word Embedding and Time-Series Data Encoding;2023 IEEE International Conference on Big Data and Smart Computing (BigComp);2023-02

4. Sequence-Graph Fusion Neural Network for User Mobile App Behavior Prediction;Lecture Notes in Computer Science;2023

5. Smartphone App Usage Analysis: Datasets, Methods, and Applications;IEEE Communications Surveys & Tutorials;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3