PIPTO: Precise Inertial-Based Pipeline for Threshold-Based Fall Detection Using Three-Axis Accelerometers

Author:

Moutsis Stavros N.1ORCID,Tsintotas Konstantinos A.1ORCID,Gasteratos Antonios1ORCID

Affiliation:

1. Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sophias, GR-671 32 Xanthi, Greece

Abstract

After traffic-related incidents, falls are the second cause of human death, presenting the highest percentage among the elderly. Aiming to address this problem, the research community has developed methods built upon different sensors, such as wearable, ambiance, or hybrid, and various techniques, such as those that are machine learning- and heuristic based. Concerning the models used in the former case, they classify the input data between fall and no fall, and specific data dimensions are required. Yet, when algorithms that adopt heuristic techniques, mainly using thresholds, are combined with the previous models, they reduce the computational cost. To this end, this article presents a pipeline for detecting falls through a threshold-based technique over the data provided by a three-axis accelerometer. This way, we propose a low-complexity system that can be adopted from any acceleration sensor that receives information at different frequencies. Moreover, the input lengths can differ, while we achieve to detect multiple falls in a time series of sum vector magnitudes, providing the specific time range of the fall. As evaluated on several datasets, our pipeline reaches high performance results at 90.40% and 91.56% sensitivity on MMsys and KFall, respectively, while the generated specificity is 93.96% and 85.90%. Lastly, aiming to facilitate the research community, our framework, entitled PIPTO (drawing inspiration from the Greek verb “πι´πτω”, signifying “to fall”), is open sourced in Python and C.

Funder

Wearable systems for the safety and wellbeing applied in security guards—SafeIT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3