Effects of Caffeine and COD from Coffee Wastewater on Anaerobic Ammonium Oxidation (Anammox) Activities

Author:

Wongphoom Titima,Saleepochn Tharinee,Noophan Pongsak LekORCID,Li Chi-WangORCID

Abstract

An anaerobic ammonium oxidation (anammox) process was employed to remove nitrogen from wastewater generated from a coffee brewing facility. The effects of caffeine and chemical oxygen demand (COD) in coffee wastewater on anammox activity were investigated. The anammox activity was inhibited in synthetic wastewater with a caffeine concentration greater than 350 mg/L. Daily additions of caffeine at 2.5 mg/L for 28 days to the same substrate did not inhibit anammox activity. However, daily additions of coffee wastewater with COD of ≥387 mg/L and caffeine at 2.5 mg/L significantly inhibited anammox activity. Because the pH was increased in the system, resulting in an increase in free ammonia (FA) concentration, one could postulate that FA is an inhibitor of anammox activity. Quantitative polymerase chain reaction (qPCR) analysis was employed to determine the populations of anammox and denitrifying bacteria. Coffee wastewater with bacterial COD to total nitrogen (bCOD:TN) ratios of 0.3–0.6:1 did not have any effect on the abundances of anammox and denitrifying bacteria. The results from this work suggest that biodegradable COD (bCOD) rather than total COD (TCOD) should be used for calculating the COD:TN ratio during the study of the effects of nitrogen removal from real wastewaters using the anammox process. A not-competitive model could fit the anammox inhibition with caffeine concentrations at 50–500 mg/L with maximum specific anammox activity (SAAmax) of 0.594 mg-N/mg-volatile suspended solids (VSS)/d and inhibitory constant (Ki) of 480.97 mg/L.

Funder

Graduate School, Kasetsart University (KU), the Kasetsart University Research and Development Institute (KURDI) and Faculty of Engineering, Kasetsart University, Bangkok, Thailand

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3