A Novel Graph-Based Vulnerability Metric in Urban Network Infrastructures: The Case of Water Distribution Networks

Author:

Ponti Andrea,Candelieri Antonio,Giordani Ilaria,Archetti Francesco

Abstract

The key contribution of this paper is to embed the analysis of the network in a framework based on a mapping from the input space whose elements are nodes of a graph or the entire graph into an information space whose elements are probability distributions associated to objects in the input space. Specifically, a node is associated to the probability distribution of its node-to-node distances and the whole graph to the aggregation of these node distributions. In this space two distances are proposed for this analysis: Jensen-Shannon and Wasserstein, based respectively on information theory and optimal transport theory. This representation allows to compute the distance between the original network and the one obtained by the removal of nodes or edges and use this distance as an index of the increase in vulnerability induced by the removal. In this way a new characterization of vulnerability is obtained. This new index has been tested in two real-world water distribution networks. The results obtained are discussed along those which relate vulnerability to the loss of efficiency and those given by the analysis of the spectra of the adjacency and Laplacian matrices of the network. The models and algorithms considered in this paper have been integrated into an analytics framework which can also support the analysis of other networked infrastructures among which power grids, gas distribution, and transit networks are included.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3