Study on the Thermodynamic Properties of Concrete Surface during Microwave Deicing of Airport Pavement

Author:

Chen HaowenORCID,Xu Jinyu,Wu Yunquan,Liu Junliang,Huang He

Abstract

In the cold belt area, the icing phenomenon often appears on the airport pavement, which affects the safety of aircraft take-off and landing. Microwave deicing technology can effectively solve this practical problem and has many advantages. Taking microwave deicing technology as the research object and the surface temperature of pavement concrete as the index, an open microwave test system has been established in this paper. Based on this system, the temperature distribution, variation rule, and influencing factors of concrete have been studied systematically. The results show that the surface temperature of concrete increases linearly due to microwave action. In addition, during the microwave action, the temperature increase of the concrete surface is centered on the center point and shows a stepwise decreasing trend along the radius. At the same time, the increase of microwave source height leads to the increase of surface temperature distribution uniformity. The surface ice affects the rate of temperature increase of concrete in stages under microwave action, and the surface edge area remains frozen for a certain period of time. The temperature distribution of concrete surface is a decisive factor affecting the degree of ice removal, and the concrete surface will generate residual heat after the microwave action ends. This phenomenon can delay the regression of the temperature distribution of the concrete surface, thus effectively preventing the re-freezing of the ice layer.

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. Current situation and development trend of road deicing and snow removal vehicles;Xu;Spec. Purp. Veh.,2018

2. Research on Key Components and Thickness Detection of Solid Ice and Snow Removal;Zhuang,2016

3. Comparison of advantages and disadvantages of snow melting agent and its substitute materials;Tao;China Highw.,2018

4. Study on salt frost erosion of pavement concrete in saline soil area;Xie;Highw. Transp. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3