Prediction and Analysis of Multi-Response Characteristics on Plasma Arc Cutting of Monel 400™ Alloy Using Mamdani-Fuzzy Logic System and Sensitivity Analysis

Author:

Devaraj RajamaniORCID,Abouel Nasr EmadORCID,Esakki Balasubramanian,Kasi Ananthakumar,Mohamed Hussein

Abstract

Nickel-based alloys, especially Monel 400™, is gaining its significance in diverse applications owing to its superior mechanical properties and high corrosion resistance. Machining of these materials is extremely difficult through the traditional manufacturing process because of their affinity to rapid work hardening and deprived thermal conductivity. Owing to these difficulties a well-established disruptive metal cutting process namely plasma arc cutting (PAC) can be widely used to cut the sheet metals with intricate profiles. The present work focuses on an intelligent modeling of the PAC process and investigation on the multi-quality characteristics of PAC parameters using the fuzzy logic approach. The Box-Behnken response surface methodology is incorporated to design and conduct the experiments, and to establish the relationship between PAC parameters such as cutting speed, gas pressure, arc current, and stand-off distance and responses which include the material removal rate (MRR), kerf taper (KT), and heat affected zone (HAZ). The quadratic regression models are developed and their performances are assessed using the analysis of variance (ANOVA). Fuzzy set theory-based models are formulated to predict various responses using the Mamdani approach. Fuzzy logic and regression results are compared with the experimental data. A comparative evaluation predicted an average error of 0.04% for MRR, 0.48% for KT, and 0.46% for HAZ, respectively. The effect of variations in PAC process parameters on selected responses are estimated through performing the sensitivity analysis.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3