Numerical Simulation and Experimental Confirmation of a Bimetallic Pipe Forming Process

Author:

Dong Zhiqiang,Xu Zhenzhen,Wang Wenke,Bi Zongyue,Zhang Jianxun

Abstract

Most oil and gas is transported by pipeline, and corrosion causes a great threat to the service life of the pipeline; bimetallic pipe, which combines the advantages of good mechanical properties, good corrosion resistance, and relatively low price, is a good choice for high-pressure and corrosion-resistant pipe, but its manufacturing process and stress distribution are more complex than single metal pipe. JCO is a widely used cold forming method for pipes which is named by the shape of the plate in the forming process, i.e. J-shape, C-shape and O-shape, and the forming process is an important parameter that determines the level of imperfections and residual stresses in a pipe, and residual tensile stress will accelerate corrosion failure of the pipe. In this study, the three-dimensional (3D) finite element method (FEM) is used to simulate the pre-bending and JCO forming process of a 2205/X65 bimetallic pipe. The model and the simulated results are validated by digital image correlation (DIC) experimental and the opening width of the formed pipe billet, respectively. The influence factors of the stresses are studied. Further, a two-dimensional (2D) model is established to study the characteristics of bimetallic plate bending and the stress distribution at the interface of different materials, and the results are compared with that of three-dimensional model.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3