Is Biochar from the Torrefaction of Sewage Sludge Hazardous Waste?

Author:

Białowiec AndrzejORCID,Pulka JakubORCID,Styczyńska Marzena,Koziel Jacek A.ORCID,Kalka Joanna,Jureczko Marcelina,Felis Ewa,Manczarski PiotrORCID

Abstract

Improved technologies are needed for sustainable management of sewage sludge (SS). The torrefaction (also known as biomass “roasting”) is considered a pretreatment of SS before use in agriculture. However, it is not known whether the torrefaction has the potential to decrease heavy metals’ (HMs) leachability and the SS toxicity. Thus, the aim of the study was to evaluate the influences of the SS torrefaction parameters (temperature and process time) on HM contents in biochar, HM leachability, and biochar toxicity, and compare them with raw SS. The experiments were designed in 18 combinations (six temperatures, 200, 220, 240, 260, 280, and 300 °C; and three process times—20, 40, 60 min). Standard tests were used to determine HMs content, leachability, and toxicity. Results indicated that the torrefaction did not increase (p < 0.05) the HM content in comparison to the raw SS. The leachability of Zn, Ni, Cu, Cr, and Mn from SS biochars was similar to raw SS. However, the degree of leachability varied significantly (p < 0.05) from as low as 0.1% for Cu to high as 16.7% for Cd. The leachability of Cd (<16.7%) and Pb (<11.9%) from biochars was higher than from raw SS (<6.1% and <2.4%, respectively). The leachability of Cd from SS biochar, in five torrefaction combinations, was higher than the threshold value for hazardous waste. It is recommended that site-specific decisions are made for torrefaction of SS with respect to its HM content, as the resulting biochar could be considered as hazardous waste, depending on the feedstock. Moreover, the biochar produced under the whole range of temperatures during 20 min retention time significantly (p < 0.05) increased the Daphnia magna Straus mobility inhibition by up to 100% in comparison to the biochar obtained during 40 and 60 min torrefaction. Taking into account the increased leachability of specific HMs and D. magna Straus mobility inhibition, biochar should be considered a potentially hazardous material. Future research should focus on biochar dosage as a fertilizer in relation to its toxicity. Additional research is warranted to focus on the optimization of SS torrefaction process parameters affecting the toxicity.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3