Abstract
Fabric-reinforced cementitious matrices (FRCM) are promising technologies that respond to today’s architectural approaches. However, due to their high strength and ductility, they are starting to be implemented in buildings as strengthening systems. In this experimental study, the amount of fiber along the load direction in high-strength cementitious matrices and the effects of the fiber orientation on FRCM mechanical properties were studied. A total of four different composites were produced with two fabrics and two matrices. Tensile and flexural tests were carried out on composites. Within the scope of microstructure studies, scanning electron microscope micrographs were obtained and analyzed, along with microtopography sections. The main result obtained from the study indicates that as the fiber area in the direction of the load increases, the load order carried in this direction increases. However, this increase does not have to be proportional to the fiber area used in the direction of the load. The fiber coating and coating matrix interface play important roles in a composite’s performance. The carbon fibers can be used more efficiently by using them along the load direction and the loads in the matrix can be transferred to the carbon fibers by creating a larger fiber–matrix interface area.
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献