Author:
Cai Ningning,Guo Daidong,Wu Guoping,Xie Fangmin,Tan Shouhong,Jiang Nan,Li He
Abstract
Silicon carbide (SiC) ceramic is an ideal material for mechanical seal because of its super hardness, high strength, low friction coefficient, good thermal conductivity, and resistance to friction and wear. However, due to relatively high resistivity of SiC ceramic, the triboelectric charge caused by rubbing of mechanical seal end-faces could not be released. It is terrible that the accumulation of triboelectric charge could cause electrochemical corrosion, which would accelerate wear. To decrease the resistivity of SiC ceramic is a desire for improving the performance of mechanical seal. In this research, decreasing resistivity of pressureless sintered SiC ceramic was investigated by conductive pathways through semiconductive grains in a body by incorporation of graphene, which has an extremely low resistivity. With the increasing of graphene from 0 to 2 wt.%, the volume resistivity of SiC ceramics sintered with graphene decreased logarithmically from >106 to around 200 Ω·cm, and the bulk density decreased gradually, from 3.132 to 3.039 g/cm3. In order to meet the requirements of mechanical seal, SiC ceramic sintered with 1 wt.% of graphene, for which the volume resistivity is of 397 Ω·cm, the bulk density is of 3.076 g/cm3, and the flexural strength is of 364 MPa, was optimized when all properties were taken into consideration. It is possible to fabricate low-resistivity SiC ceramic as a useful friction pair material for mechanical seal in a special condition, without excessive loss of their excellent mechanical properties by the introduction of partially connected graphene as conductive pathway into semiconducting ceramic.
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献