Antifouling Potential of Ethyl Acetate Extract of Marine Bacteria Pseudomonas aeruginosa Strain RLimb

Author:

Rawi Nurul Najihah1,Ramzi Mujahidah Mohd1,Rahman Nor Izzati Abd1,Ariffin Fazilah2ORCID,Saidin Jasnizat1ORCID,Bhubalan Kesaven12ORCID,Mazlan Noor Wini2ORCID,Zin Nor Atikah Mohd1,Siong Julius Yong Fu1,Bakar Kamariah1,Azemi Ahmad Khusairi1ORCID,Ismail Noraznawati1

Affiliation:

1. Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia

2. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia

Abstract

Biofouling is defined as the excessive colonization process of epibiotic organisms, ranging from microfoulers to macrofoulers, on any submerged surface in water. Previous research has attempted to explore the antifouling activity of bacterial isolates due to the biofouling problems occurring worldwide. One solution is to inhibit the early stage of fouling using secondary metabolites produced by marine bacteria. This study aims to determine the antifouling activities of the marine microorganism P. aeruginosa and to characterize the bacteria isolated as a potential anti-biofouling agent. The bacterial isolate was cultured and isolated on a media culture. The bacteria culture extract was extracted using ethyl acetate and concentrated prior to the bioassay method. It was screened for antibacterial activities against Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Streptococcus uberis, Pseudomonas sp., and Vibrio parahaemolyticus, using the disk diffusion technique. The extract was investigated to verify its bioactivity in the prevention of biofilm formation following the crystal violet assay and aquarium test. The results indicated the inhibition of activity through biofilm formation, with the highest percentage at 83% of biofilm inhibition at a concentration of 0.1563 mg/mL. The bacterial isolate at a concentration of 5% showed the highest reduction in bacteria colonies in the aquarium test (161.8 × 103 CFU/mL compared to 722.5 × 103 CFU/mL for the blank sample). The bacterial isolate was characterized through phenotypic and genotypic tests for species identification. It was identified as a Gram-stain-negative, aerobic, and long-rod-shaped bacteria, designated as RLimb. Based on the 16S rDNA gene sequencing analysis, RLimb was identified as Pseudomonas aeruginosa (accession number: OP522351), exhibiting a similarity of 100% to the described neighbor P. aeruginosa strain DSM 50071. These results indicated that these isolated bacteria can potentially be used as a substitute for toxic antifoulants to prevent the formation of microfoulers.

Funder

Oil & Gas Company

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3