Biosynthesis of Novel Ag-Cu Bimetallic Nanoparticles from Leaf Extract of Salvia officinalis and Their Antibacterial Activity

Author:

Malik Maqsood Ahmad1ORCID,Albeladi Shroog ShdiedRoyji1,Al-Maaqar Saleh Mohammed2,Alshehri Abdulmohsen Ali1ORCID,Al-Thabaiti Shaeel Ahmed1,Khan Imran3,Kamli Majid Rasool24ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

2. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

3. Applied Science Section, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

4. Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

Bimetallic nanoparticles exhibit bifunctional or synergistic effects prevailing between two metals with the capabilities of enhanced electronic, catalytic, and optical properties. Green synthetic routes have gained tremendous interest because of the noninvolvement of toxic and harmful chemical reagents in preparation. Therefore, we develop bimetallic Ag-Cu nanoparticles (Ag-Cu NPs) through an eco-friendly and biocompatible preparation method. In this study, Ag-Cu NPs have been synthesized from leaf extracts of the commonly known sage, S. officinalis. The extract has a rich phytochemical composition, including bioreducing polyphenols, flavonoids, and capping/stabilizing agents. An array of well-known spectroscopic and microscopic techniques were used to characterize the as-prepared Ag-Cu bimetallic nanoparticles, including X-ray diffraction (XRD), ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The size of the Ag-Cu NPs was found to be 50 nm with a spherical shape and an almost uniform distribution. The antibacterial effect was further evaluated using agar well diffusion and disc diffusion assays. Ag-Cu NPs exhibit antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria strains. The minimum inhibitory concentration (MIC) of Ag-Cu NPs was between 5 g/mL and 15 g/mL. The Ag-Cu NPs inhibit biofilm formation at 25 g/mL and 50 g/mL. The results of biogenic Ag-Cu NPs provide novel antibacterial activity against Gram-positive and Gram-negative bacteria, as well as antibiofilm activity. Hence, Ag-Cu NPs might serve as a novel antibacterial agent with potential antibacterial and antibiofilm properties.

Funder

The Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah,

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3