Target Trial Emulation Using Hospital-Based Observational Data: Demonstration and Application in COVID-19

Author:

Martinuka Oksana1ORCID,Cube Maja von1ORCID,Hazard Derek1,Marateb Hamid Reza23ORCID,Mansourian Marjan34,Sami Ramin5,Hajian Mohammad Reza5,Ebrahimi Sara6,Wolkewitz Martin1

Affiliation:

1. Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre, University of Freiburg, 79104 Freiburg, Germany

2. Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan 81746-73441, Iran

3. Biomedical Engineering Research Centre (CREB), Automatic Control Department (ESAII), Universitat Politècnica de Catalunya-Barcelona Tech (UPC) Building H, Floor 4, Av. Diagonal 647, 08028 Barcelona, Spain

4. Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

5. Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

6. Alzahra Research Institute, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan 81746-75731, Iran

Abstract

Methodological biases are common in observational studies evaluating treatment effectiveness. The objective of this study is to emulate a target trial in a competing risks setting using hospital-based observational data. We extend established methodology accounting for immortal time bias and time-fixed confounding biases to a setting where no survival information beyond hospital discharge is available: a condition common to coronavirus disease 2019 (COVID-19) research data. This exemplary study includes a cohort of 618 hospitalized patients with COVID-19. We describe methodological opportunities and challenges that cannot be overcome applying traditional statistical methods. We demonstrate the practical implementation of this trial emulation approach via clone–censor–weight techniques. We undertake a competing risk analysis, reporting the cause-specific cumulative hazards and cumulative incidence probabilities. Our analysis demonstrates that a target trial emulation framework can be extended to account for competing risks in COVID-19 hospital studies. In our analysis, we avoid immortal time bias, time-fixed confounding bias, and competing risks bias simultaneously. Choosing the length of the grace period is justified from a clinical perspective and has an important advantage in ensuring reliable results. This extended trial emulation with the competing risk analysis enables an unbiased estimation of treatment effects, along with the ability to interpret the effectiveness of treatment on all clinically important outcomes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3