Abstract
Modularity has been regarded as one of the most important properties of a successful software design. It has significant impact on many external quality attributes such as reusability, maintainability, and understandability. Thus, proposing metrics to measure the software modularity can be very useful. Although several metrics have been proposed to characterize some modularity-related attributes, they fail to characterize software modularity as a whole. A complex network uses network models to abstract the internal structure of complex systems, providing a general way to analyze complex systems as a whole. In this paper, we introduce the complex network theory into software engineering and employ modularity, a metric widely used in the field of community detection in complex network research, to measure software modularity as a whole. First, a specific piece of software is represented by a software network, feature coupling network (FCN), where methods and attributes are nodes, couplings between methods and attributes are edges, and the weight on the edges denotes the coupling strength. Then, modularity is applied to the FCN to measure software modularity. We apply the Weyuker’s criteria which is widely used in the field of software metrics, to validate the modularity as a software metric theoretically, and also perform an empirical evaluation using open-source Java software systems to show its effectiveness as a software metric to measure software modularity.
Funder
National Natural Science Foundation of China
Commonweal Project of Science and Technology Department of Zhejiang Province
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献