Comparative Study on Phytoplankton Treatment Effectiveness of the Ballast Water Management System with Four Different Processes

Author:

Zhang Yan12,Feng Wei12,Chen Yating12,Xue Junzeng12,Wu Huixian12

Affiliation:

1. College of Marine Ecology and Environment, Shanghai Ocean University, 999th, Huancheng Road, Pudong New District, Shanghai 201306, China

2. Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, 999th, Huancheng Road, Pudong New District, Shanghai 201306, China

Abstract

Ballast water (BW) poses the risk of introducing species. Therefore, ships install the ballast water management system (BWMS) to reduce the risks caused by BW. To gain a deeper understanding of the treatment effectiveness of the BWMS, in this study we compared the effectiveness of four different treatment processes of BWMSs on seawater phytoplankton, which were electrochlorination treatment, hydroxyl radical oxidation treatment, membrane separation and deoxygenation treatments, and UV irradiation treatment. The results showed that all four BWMSs had a reduction in phytoplankton density of over 99%. In terms of phytoplankton taxa, the effectiveness of the four BWMSs was different. The taxa removal rates of the four BWMSs were 81.25%, 39.58%, 59.31%, and 74.49%, respectively. Electrochlorination treatment and UV irradiation treatment were significantly more effective than hydroxyl radical oxidation treatment and membrane separation and deoxygenation treatments. The residual phytoplankton taxa were mainly dinoflagellate and diatoms, such as Cucumeridinium, Prorocentrum, Navicula, and Skeletonema. Taxa that can tolerate treatment may be more likely to survive and reproduce. There is still a need to continue to strengthen the development and research on the BWMS in the future to promote the development of BW management.

Funder

National Key Research and Development Program of China

Shanghai Ocean University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3