Establishment and Application of Real-Time Fluorescence Quantitative PCR Detection Technology for Metschnikowia bicuspidata Disease in Eriocheir sinensis

Author:

Xing Yuenan1,Chen Ye1,Feng Chengcheng1ORCID,Bao Jie1,Li Xiaodong1,Jiang Hongbo1

Affiliation:

1. Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China

Abstract

Metschnikowia bicuspidata causes a “milky disease” in Chinese mitten crab, Eriocheir sinensis, which inflicts significant damage on the breeding industry, but there are no effective drugs for this disease. Precise detection technologies and clarification of transmission routes are now essential to prevent its occurrence. A real-time fluorescent quantitative PCR (qPCR) detection method targeting the mitochondrial cytochrome c oxidase subunit VIA (COX6A) of M. bicuspidata was developed and its sensitivity, specificity, repeatability, and application effectiveness evaluated. There was a robust linear relationship between the qPCR threshold cycle value (Ct) and copy number of the standard with a wide dynamic range. The standard curve had a correlation coefficient (R2) of 0.996, amplification efficiency of 103.092%, and a lower limit of detection sensitivity of 7.6 × 101 copies/µL. The COX6A-qPCR method exhibited high specificity for the detection of M. bicuspidata, with no cross-reactivity. The intra- and inter-group variation coefficients were <1% and 2%, respectively. The qPCR exhibited superior sensitivity compared to existing detection methods, with a positivity rate of 76.67%. The M. bicuspidata content ranged from 1.0 × 101–2.7 × 106 copies/µL. The COX6A-qPCR detection technology exhibited high sensitivity, strong specificity, and excellent repeatability, enabling the accurate quantification of M. bicuspidata.

Funder

Liaoning Province Natural Science Foundation project

China Agriculture Research System of MOF and MARA

Liaoning Province “The Open Competition Mechanism to Select the Best Candidates” Project

Shenyang City “The Open Competition Mechanism to Select the Best Candidates” Project

Shenyang Science and technology mission project

Liaoning province Department of Education fund item

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3