Meyerozyma caribbica Isolated from Vinasse-Irrigated Sugarcane Plantation Soil: A Promising Yeast for Ethanol and Xylitol Production in Biorefineries

Author:

Alencar Bárbara Ribeiro Alves12,de Freitas Renan Anderson Alves2,Guimarães Victor Emanuel Petrício3,Silva Rayssa Karla23ORCID,Elsztein Carolina2,da Silva Suzyanne Porfírio1,Dutra Emmanuel Damilano1,de Morais Junior Marcos Antonio2ORCID,de Souza Rafael Barros3ORCID

Affiliation:

1. Laboratory of Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50670-901, Brazil

2. Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil

3. Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50110-000, Brazil

Abstract

The production of fuels and other industrial products from renewable sources has intensified the search for new substrates or for the expansion of the use of substrates already in use, as well as the search for microorganisms with different metabolic capacities. In the present work, we isolated and tested a yeast from the soil of sugarcane irrigated with vinasse, that is, with high mineral content and acidic pH. The strain of Meyerozyma caribbica URM 8365 was able to ferment glucose, but the use of xylose occurred when some oxygenation was provided. However, some fermentation of xylose to ethanol in oxygen limitation also occurs if glucose was present. This strain was able to produce ethanol from molasses substrate with 76% efficiency, showing its tolerance to possible inhibitors. High ethanol production efficiencies were also observed in acidic hydrolysates of each bagasse, sorghum, and cactus pear biomass. Mixtures of these substrates were tested and the best composition was found for the use of excess plant biomass in supplementation of primary substrates. It was also possible to verify the production of xylitol from xylose when the acetic acid concentration is reduced. Finally, the proposed metabolic model allowed calculating how much of the xylose carbon can be directed to the production of ethanol and/or xylitol in the presence of glucose. With this, it is possible to design an industrial plant that combines the production of ethanol and/or xylitol using combinations of primary substrates with hydrolysates of their biomass.

Funder

Brazilian agencies Coordination for the Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

Foundation for Science and Technology of the State of Pernambuco

FACEPE

CNPq

CAPES

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3