A Heartbeat Classifier for Continuous Prediction Using a Wearable Device

Author:

Pramukantoro Eko SaktiORCID,Gofuku Akio

Abstract

Heartbeat monitoring may play an essential role in the early detection of cardiovascular disease. When using a traditional monitoring system, an abnormal heartbeat may not appear during a recording in a healthcare facility due to the limited time. Thus, continuous and long-term monitoring is needed. Moreover, the conventional equipment may not be portable and cannot be used at arbitrary times and locations. A wearable sensor device such as Polar H10 offers the same capability as an alternative. It has gold-standard heartbeat recording and communication ability but still lacks analytical processing of the recorded data. An automatic heartbeat classification system can play as an analyzer and is still an open problem in the development stage. This paper proposes a heartbeat classifier based on RR interval data for real-time and continuous heartbeat monitoring using the Polar H10 wearable device. Several machine learning and deep learning methods were used to train the classifier. In the training process, we also compare intra-patient and inter-patient paradigms on the original and oversampling datasets to achieve higher classification accuracy and the fastest computation speed. As a result, with a constrain in RR interval data as the feature, the random forest-based classifier implemented in the system achieved up to 99.67% for accuracy, precision, recall, and F1-score. We are also conducting experiments involving healthy people to evaluate the classifier in a real-time monitoring system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Cardiovascular diseases;Charlton,1997

2. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise

3. Polar H10 Heart Rate Sensor System;Polar Res. Technol.,2019

4. A study of bluetooth low energy (BLE) frameworks on the IoT based heart monitoring system;Pramukantoro;Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech),2021

5. Let’s build products together https://www.polar.com/en/developers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3