Application of Machine Learning in Battery: State of Charge Estimation Using Feed Forward Neural Network for Sodium-Ion Battery

Author:

Darbar Devendrasinh,Bhattacharya IndranilORCID

Abstract

Estimating the accurate State of Charge (SOC) of a battery is important to avoid the over/undercharging and protect the battery pack from low cycle life. Current methods of SOC estimation use complex equations in the Extended Kalman Filter (EKF) and the equivalent circuit model. In this paper, we used a Feed Forward Neural Network (FNN) to estimate the SOC value accurately where battery parameters such as current, voltage, and charge are mapped directly to the SOC value at the output. A FNN could self-learn the weights with each training data point and update the model parameters such as weights and bias using a combination of two gradient descents (Adam). This model comprises the Dropout technique, which can have many neural network architectures by dropping the neuron/mode at each epoch/training cycle using the same weights and biases. Our FNN model was trained with data comprising different current rates and tested for different cycling data, for example, 5th, 10th, 20th, and 50th cycles and at a different cutoff voltage (4.5 V). The battery used for estimating the SOC value was a Na-ion based battery, which is highly non-linear, and it was fabricated in a house using Na0.67Fe0.5Mn0.5O2 (NFM) as a cathode and Na metal as a reference electrode. The FNN successfully estimated the SOC value for the highly non-linear nature of the Na-ion battery at different current rates (0.05 C, 0.1 C, 0.5 C, 1 C, 2 C), for different cycling data, and at higher cut-off voltage of –4.5 V Na+, reaching the R2 value of ~0.97–~0.99, ~0.99, and ~0.98, respectively.

Publisher

MDPI AG

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

Reference33 articles.

1. Global EV Outlook 2020 https://www.iea.org/reports/global-ev-outlook-2020

2. Battery Management System Algorithms for HEV Battery Sate-of-Charge and State-of-Health Estimation. Advanced Materials and Methods for Lithium-ion Batteries;Plett,2007

3. Battery Management Systems, Volume I: Battery Modeling;Plett,2015

4. Modeling, evaluation, and state estimation for batteries;Mu,2018

5. Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3