Affiliation:
1. Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
2. Research Organization for Nano and Life Innovation, Waseda University, Shinjuku, Tokyo 162-0041, Japan
Abstract
Water pollution has badly affected human health, aquatic life, and the ecosystem. The purity of surface water can be measured in terms of dissolved oxygen (DO) measurements. Hence, it is desirable to have a portable and simple-to-use dissolved oxygen sensor. One possible remedy is an electrochemical sensor. Thus, we proposed an ITO-IrOx electrocatalyst for an effective and interference-free DO sensor utilizing the principle of oxygen reduction reaction (ORR). The ITO-IrOx was characterized using cyclic voltammetry (CV), scanning electron microscopy (SEM), electrochemical impedance spectrometry (EIS), X-ray photoelectron spectroscopy (XPS), and reflectance spectroscopy-based techniques. Reflectance spectra of the ITO-IrOx electrode showed the photoresist capability. The EIS spectra revealed lower charge transfer resistance for the ITO-IrOx electrode in ORR. The IrOx film on ITO exhibited a quick (one electron, α = 1.00), and reversible electron transfer mechanism. The electrode demonstrated high stability for oxygen sensing, having a limit of detection (LOD) of 0.49 ppm and interference-free from some common ions (nitrate, sulphate, chloride etc.) found in water.
Funder
Ministry of Education
Shahjalal University of Science and Technology
Ministry of Science and Technology
Subject
Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献