Investigation of Physiochemical Impact of Organic Molecule L-Lysine on Ammonium Dihydrogen Phosphate Single Crystal for Optoelectronics Applications

Author:

Patle Shruti1ORCID,Rotake Dinesh2ORCID,Rewatkar Kishor3

Affiliation:

1. Department of Applied Physics, Priyadarshini J. L. College of Engineering, Nagpur 440009, India

2. Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 500001, India

3. Vidya Vikas Arts Commerce and Science College, Samudrapur 442305, India

Abstract

Ammonium dihydrogen phosphate (ADP) single crystals along with the incorporated 0.5 and 1% L-lysine, an organic molecule which possesses a good nonlinear response, were grown with the vision to meet the requirements of the optoelectronic industry. The inclusion of the L-lysine molecule in the crystal was confirmed by the XRD and EDX. The experiment not only confirms the inclusion level of the impurity but also the capability of the amino acid molecule to bond hydrogen within the crystal facet. A minor decrease in lattice parameters was reported for all ADP: L-lysine crystals compared with pure ADP. The structures of the grown crystals were identified as tetragonal with the space group I42d by the single-crystal XRD analysis. Vibrational signatures and functional groups were confirmed using FTIR spectroscopy. The thermal stability and decomposition temperatures of 0.5 and 1% L-lysine-added crystals were measured by TG/DTA and found to be 203 °C and 207 °C, respectively. The UV–visible transmission spectra prove a higher transparency for doped crystals as compared to pure crystals; therefore, these doped crystals can be considered the best option for the frequency doubling process in a broad range of visible and near-IR spectra. The improved hardness of the doped crystals was confirmed by the Vickers hardness data. The nonlinear optical (NLO) behaviour investigated using a second-harmonic generation (SHG) technique, indicating an efficient quadratic nonlinear coefficient of ADP: Lysine crystals at a 1064 nm initial wavelength, shows about 1.5-fold higher efficiency compared with undoped ADP.

Publisher

MDPI AG

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3