An Insight into the Reactivity of the Electrogenerated Radical Cation of Caffeine

Author:

Feroci MartaORCID,Bortolami Martina,Chiarotto IsabellaORCID,Di Matteo Paola,Mattiello Leonardo,Pandolfi Fabiana,Rocco Daniele,Petrucci RitaORCID

Abstract

Controlled potential electrolyses of caffeine (CAF) were carried out at a Pt electrode in undried acetonitrile (ACN) and ACN-H2O and the products of the anodic oxidation were analyzed by HPLC-PDA-ESI-MS/MS. A higher current efficiency occurred in ACN-H2O, but an analogous chromatographic outline was found in both media, evidencing a reactive pathway of the electrogenerated radical cation CAF•+ with water, added or in trace, as nucleophile. No dimeric forms were evidenced, excluding any coupling reactions. Neither was 1,3,7-trimethyluric acid found, reported in the literature as the main oxidative route for CAF in water. Four main chromatographic peaks were evidenced, assigned to four proposed structures on the base of chromatographic and spectral data: a 4,5-diol derivative and an oxazolidin-2-one derivative were assigned as principal oxidation products, supporting a mechanism proposed in a previous work for the primary anodic oxidation of the methylxanthines olefinic C4 = C5 bond. Two highly polar degradation products were also tentatively assigned, that seemed generating along two different pathways, one opening the imidazolic moiety and another one opening the purinic one.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3