Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications

Author:

Gandhi Mansi12ORCID

Affiliation:

1. Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel

2. School of Innovation in Biodesign, Translational Health Science and Technology Institute, Faridabad 121001, India

Abstract

Plants have a remarkable position among renewable materials because of their abundance, and nearly thousands of tons are consumed worldwide every day. Most unexploited plants and agricultural waste can be a real potential resource system. With increasing environmental awareness and the growing importance of friendly agricultural waste, crops and fruit waste can be used for efficient conversion into bio-fertilizers, biocarbons, bio-polymers, biosensors and bio-fibers. Global challenges based on limited natural resources and fossil energy reserves simulated keen interest in the development of various electrochemical systems inspired by food and plant scraps, which aid in curbing pollution. The successful adoption of a renewable energy roadmap is dependent on the availability of a cheaper means of storage. In order to cut down the cost of storage units, an improvement on energy storage devices having better stability, power, and energy density with low post-maintenance cost is the vital key. Although food and plant scraps have a huge need for energy storage, it has been extended to various sensing platform fabrications, which are eco-friendly and comparable to organic molecule-based sensors. Current research proclivity has witnessed a huge surge in the development of phyto-chemical-based sensors. The state-of-the-art progresses on the subsequent use of plant-waste systems as nano-engineered electrochemical platforms for numerous environmental science and renewable energy applications. Moreover, the relevant rationale behind the use of waste in a well-developed, sustainable future device is also presented in this review.

Publisher

MDPI AG

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3