The Difference in the Effects of IR-Drop from the Negative Capacitance of Fast Cyclic Voltammograms

Author:

Liu Yuanyuan1ORCID,Aoki Koichi Jeremiah2,Chen Jingyuan12ORCID

Affiliation:

1. Department of Applied Physics, University of Fukui, Fukui 910-0017, Japan

2. Electrochemistry Museum, Fukui 9103115, Japan

Abstract

Diffusion-controlled cyclic voltammograms at fast scan rates show peak shifts, as well as decreases in the peak currents from predicted diffusion-controlled currents, especially when the currents are large in a low concentration of supporting electrolytes. This has been conventionally recognized as an IR-drop effect due to solution resistance on the peaks, as well as a heterogeneously kinetic effect. It is also brought about by the negatively capacitive currents associated with charge transfer reactions. The reaction product generates dipoles with counterions to yield a capacitance, the current of which flows oppositely to that of the double-layer capacitance. The three effects are specified here in the oxidation of a ferrocenyl derivative using fast scan voltammetry. The expression for voltammograms complicated with IR-drop is derived analytically and yields deformed voltammograms. The peak shift is approximately linear with the IR-voltage, but exhibits a convex variation. The dependence of some parameters on the peaks due to the IR-drop is compared with those due to the negative capacitance. The latter is more conspicuous than the former under conventional conditions. The two effects cannot be distinguished specifically except for variations in the conductance of the solution.

Publisher

MDPI AG

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3